CENTRUM TECHNIKI OKRĘTOWEJ S.A.

Zentrum für Schifftechnik AG

Ship Design and Research Centre S.A.

FORSCHUNGS- UND ENTWICKUNGSANSTALT

LABORE FÜR UMWELTUNTERSUCHUNGEN

LABOR FÜR AKUSTIK

UNTERSUCHUNGSBERICHT

Nr. RS-2014/B-194

Schalldämpfungseffektivität bei der Sofa

"Vancouver Lite mit Paravent"

Anschrift:

ul. Szczecińska 65

80-392 Gdańsk

Tel.: 58 511 62 28

E-Mail: rs@cto.gda.pl

CYO S.A.

Ausstellungsdatum:

Exemplar Nr.: 1

23.06.2014

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	2/13

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	2/13

Inhaltsverzeichnis

Spis treści

1. Grunddaten	3
2. Untersuchungsmethode	. 4
3. Technische Beschreibung des untersuchten Gegenstandes und des Messumfelds	4
4. Messungen und Berechnungen	. 8
5 Messunsicherheit	12

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	3/13

1. Grunddaten

Tab. 1. Übersicht der Untersuchungsdaten und Parameter

Auftraggeber:	Auftrag (E-Mail) vom: 24.04.2014
PROFIM Sp. z 0.0.	ul. Górnicza 8
62-700 Turek	Interne Auftragsnummer CTO S.A.: 8-481-01-223
Bezeichnung und Typ des untersuchten	Annahmedatum zur Untersuchung: 08.05.2014
Gegenstands:	Datum und Ort der Messung:
Sofa "Vacouver Lite mit Paravent"	20.05.2014,
	Labore für Umweltuntersuchung
	Labor für Akustik
Hersteller:	Methode der Messung und Auswertung der
PROFIM Sp. z 0.0.	Ergebnisse:
ul. Górnicza 8	Gemäß:
62-700 Turek	-Norm PN-EN ISO 11821:1997
	-PN-EN ISO 354:2005
Bezeichnung der Probe bei CTO S.A.:	Umfeldverhältnisse:
	- Lufttemperatur: 20.6 °C,
LA 325	- Luftfeuchtigkeit: 54.9 %
Messtechnik:	
Messmikrofon	Norsonic Typ 1225
	Seriennummer 112850
Vorverstärker	Norsonic Typ 1201
	Seriennummer 30610
Kalibriergerät	Norsonic Typ 1251 Seriennummer 33204
Thermo-hygro-barometer	GFTB 100 Seriennummer 122158
Schallquelle	Larson Davis, BAS001 Nr. 1225-DIC08
	Larson Davis, BAS002 Nr. A036
Analysator	Norsonic Typ N-I21 Seriennummer 31378
Stahlmessband	Typ MN-81-145, RS3/0003
Feldforschungsergebnisse für die Effektivität des	Schallschirms:
Messparameter	Gemessener Wert
D _p - Schalldämpfung	D _p - Tab. 4.
D _{pA} - Schalldämpfung korrigiert um	D _{pA} - Tab. 5.
Frequenzcharakteristik A	
Hinweis: Die dargestellten Messergebnisse gelter	n nur für den untersuchten Gegenstand.

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	4/13

2. Untersuchungsmethode

Messung der Schirmeffektivität der Sofa wurde gem. Norm PN-ISO 11821: 1997 unter Anwendung der direkten Messmetode vorgenommen.

Die Messung wurde mit Anwendung von einem an der Sofa befestigten Paravent und nach seinem Abbau vorgenommen.

Es wurde die direkte Messmethode mit einem im Durchschnitt in der Zeit ermittelten Schalldruckpegel mit einer Ersatzschallquelle angewendet.

3. Technische Beschreibung des untersuchten Gegenstandes und des Messumfelds

Sofa- und Sesselkollektion Vancouver Lite mit Paravents.

Ausführungen:

VL1 HNL1 V - Sessel

VL2 HNL2 V 2-Sitzer-Sofa

VL2,5 HNL2,5 V – 2,5-Sitzer-Sofa

Gestell:

H – Ausführung auf Füßen, Füße aus 40x40mm-Profil; Fußhöhe 13 cm

V – Ausführung auf Metallkufen; Kufenblechstärke 6 mm; Kufenhöhe 13 cm

Gleiter:

H-Ausführung – Kunststoffgleiter hart; Filzgleiter als Sonderausstattung.

V-Ausführung – Filzgleiter geklebt für jedes Modell.

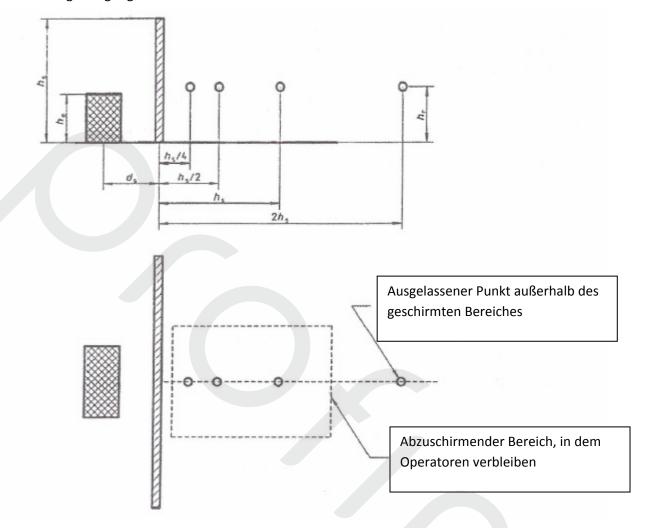
Sitz:

Schaum vom Block geschnitten, Dichte 40 kg/m3.

Paravent: Kern: 8 mm-OSB-Platte. Verkleidung: T35 kg/m3 Schaum 5mm Stärke, mit Textilpolsterung. Lehne:

Schaum vom Block geschnitten, Dichte 25 kg/m3...

Bruttogewicht:


- VL1 H 26,5 kg
- VL1 V 30,5 kg
- VL2 H 38,0 kg
- VL2 V 42,0 kg
- VL2,5 H 42,0 kg
- VL2,5 V 46,0 kg

Nettogewicht:

- VL1 H 23,5 kg
- VL1 V 27,5 kg
- VL2 H 32,0 kg
- VL2 V 36,0 kg
- VL2,5 H 36,0 kg
- VL2,5 V 40,0 kg

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	5/13

Die Messung erfolgte gemäß Schema in der Norm PN-EN ISO 11821.

- h₁ typische Höhe des Operators (1,55 m +/- 0,075 m, wenn nicht anders bestimmt
- h_e Schallquellenhöhe (bei einer Ersatzquelle soll gleich oder größer als die natürliche Schallquelle sein)
- d_s Entfernung zwischen der Mitte der Schallquelle und dem Schallschirm

Abb. 1. Lage der Messpunkte bei der Messung im geschirmten Bereich,

(Quelle: Norm PN-EN ISO 11821:2005, Abb. 2, S. 11).

Beim untersuchten Gegenstand beträgt die Paraventhöhe 140 cm.

Die Lage der Schallquelle wurde für 110 cm Höhe festgelegt, was der natürlichen Lage der Münder von geschirmten Gesprächspartner entspricht, die auf der Sofa sitzen.

Messpunkte wurden gem. Schema in folgenden Entfernungen aufgestellt:

$$h_s/4 = 35$$
 cm,

$$h_s 2 = 70 \text{ cm},$$

$$h_s = 140 \text{ cm},$$

$$2 h_s = 280 cm.$$

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	6/13

Lichtbilder des Schirms wurden in Abb. 2 und 5 dargestellt.

Abb. 2. Aufstellung des Mikrofons 35 cm vom Paravent entfernt.

Abb. 3. Aufstellung des Mikrofons 140 cm vom Paravent entfernt.

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	7/13

Abb. 4. Aufstellung des Mikrofons 140 cm von der Sofa ohne Paravent entfernt.

Abb. 5. Lokalisierung der Schallquelle auf der Höhe von 110 cm.

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	8/13

4. Messungen und Berechnungen

Vor der Messung mit dem Schallanalysator NORSONIC NOR-121. wurde die Technik mit dem akustischen Kalibriergerät geprüft. Die Messung erfolgte bei folgenden Umfeldverhältnissen:

- Lufttemperatur: 20.6 °C,

- Luftfeuchtigkeit: 54.9 %

- akustischer Hintergrund des Raums an der Messstelle wurde in der Tab. 2 dargestellt.

- Nachhallzeit an der Messstelle wurde in der Tab. 3 dargestellt.

Tab. 2. Messergebnisse des akustischen Hintergrunds in der Frequenzfunktion.

Frequenz (Hz)	Schalldruckpegel
(Hz)	Leq (dB)
50	37,0
63	24,6
80	20,8
100	20,7
125	16,6
160	16,2
200	17,2
250	15,5
315	15,3
400	15,0
500	15,6
630	13,9
800	14,3
1000	16,4
1250	17,3
1600	14,5
2000	15,7
1500	15,8
3150	14,9
4000	15,2
5000	16,1
6300	16,5
8000	17,4
10000	18,6
SUMMARISCH (dBA)	28,6

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	9/13

Tab. 3. Ergebnisse der Nachhallzeit an der Messstelle in der Frequenzfunktion.

Frequenz (Hz)	Nachhallzeit
(Hz)	t (s)
50	1,3
63	1,6
80	1,6
100	1,5
125	1,6
160	1,3
200	1,2
250	1,0
315	1,0
400	0,9
500	0,9
630	0,9
800	0,9
1000	0,9
1250	1,0
1600	1,0
2000	1,0
1500	1,0
3150	0,9
4000	0,9
5000	0,8
6300	0,7
8000	0,7
10000	0,60

Die Messung erfolgte in der Haupthalle des Labors für Akustik im Zentrum für Schifftechnik AG, in der die die untersuchte Sofa umliegenden Flächen mit Platten aus Mineralwolle verkleidet wurden, um die Verhältnisse während der Messung den Freifeldverhältnissen anzunähern. Die Flächen des Bodens und der Decke 8 m über dem Boden waren reflektierende Flächen.

Bei der Schalldämpfungsmessung wurde eine wirkliche Hochleistungsschallquelle BASOO1 sowie BASOO2 von Larson Davis verwendet. An jedem Messpunkt wurden drei Messungen vorgenommen, der Durchschnittswert von denen für weitere Berechnungen verwendet wurde. Die Schallpegelwerte im Verhältnis zum akustischen Hintergrund sind größer als 10 dB, so dass gemäß Norm für weitere Berechnungen keine Korrekturen zur Berücksichtigung des Hintergrundlärms angenommen werden.

Schalldämpfung in Oktav- bzw. 1/3-Oktavbändern gemessen in Feldverhältnissen Dp bei der jeweiligen Mikrofonstellung gemäß Norm PN-EN ISO 11821 beträgt:

$$Dp = Lpl - Lp2$$

Lpl – Schaldruckpegel in 1/3-Oktavbändern ohne Paravent

Lp2 - Schaldruckpegel in 1/3-Oktavbändern mit Paravent

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	10/13

Die Messungen wurden für 4 Mikrofonentfernungen vom Paravent gemäß Beschreibung in der Abb. 1 vorgenommen. Die Schalldämpfungsergebnisse in 1/3-Oktavbändern wurden in der Tab. 4 dargestellt.

Tab. 4. Schalldämpfung Dp [dB] in 1/3-Oktavbändern bei unterschiedlichen Entfernungen vom Schallschirm.

		Schalldämpfung D _p		
Frequenz (Hz)	Entfernung 35 cm	Entfernung 70 cm	Entfernung 140	Entfernung 280
			cm	cm
(Hz)	[dB]	[dB]	[dB]	[dB]
50	2	0	0	0
63	3	-1	-1	-2
80	2	-1	-4	-6
100	1	-1	-2	-3
125	4	-1	3	-6
160	4	0	-1	3
200	3	3	1	0
250	9	6	5	5
315	13	10	8	8
400	13	9	10	7
500	9	8	4	6
630	13	8	8	5
800	15	12	7	2
1000	14	11	7	5
1250	11	7	3	2
1600	12	10	8	6
2000	12	6	5	2
1500	14	8	5	3
3150	12	10	7	4
4000	12	9	6	4
5000	14	8	6	5
6300	17	11	8	4
8000	12	8	7	4
10000	12	8	4	5

[Unterschrift Jakubowski]

Schalldämpfung korrigiert mit der Frequenzcharakteristik in Feldverhältnissen DpA bei der jeweiligen Mikrofonstellung gemäß Norm PN-EN ISO 11821 beträgt:

$$DpA = LpAI - LpAI$$

LpA1 – Schalldruckpegel korrigiert mit der Frequenzcharakteristik A bei der Messung ohne Paravent LpA2 - Schalldruckpegel korrigiert mit der Frequenzcharakteristik A bei der Messung mit Paravent Schalldämpfung korrigiert mit der Frequenzcharakteristik A, gemessen in Feldverhältnissen DpA wurde in der Tab. 5 dargestellt.

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	11/13

Tab. 5. Schalldämpfung DpA [dBA]

Schalldämpfung DpA			
Entfernung 35 cm	Entfernung 70 cm	Entfernung 140 cm	Entfernung 280 cm
[dBA]	[dBA]	[dBA]	[dBA]
12	9	7	5

[Unterschrift: Jakubowski]

Alle Ergebnisse wurden auch in der Abb. 6 grafisch dargestellt

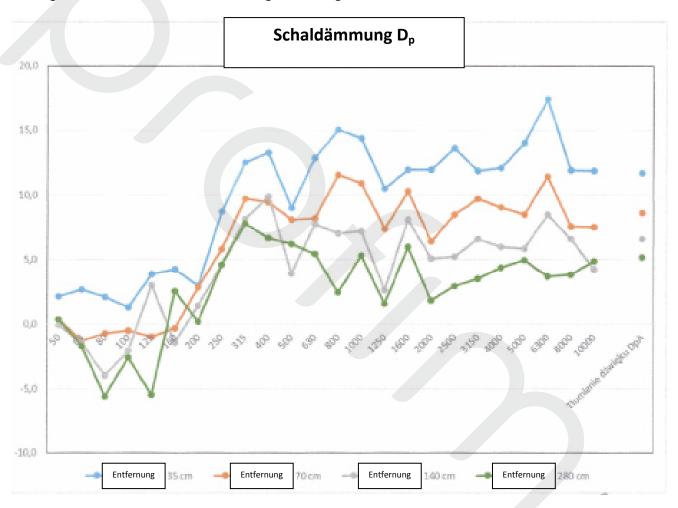


Abb. 6. Grafische Darstellung der Ergebnisse zur Schalldämpfung der Sofa "Vancouver Lite mit Paravent".

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	12/13

5. Messunsicherheit

Die Messungen wurden mit folgender Genauigkeit vorgenommen:

Für den Schalldruckpegel Leq [dB]

Frequenz (Hz)	Standardabweichung
(Hz)	Leq [dB]
50	1,9
63	1,0
80	0,5
100	1,1
125	0,7
160	0,3
200	1,0
250	0,2
315	0,2
400	0,2
500	0,1
630	0,1
800	0,1
1000	0,1
1250	0,1
1600	0,0
2000	0,0
1500	0,1
3150	0,1
4000	0,1
5000	0,1
6300	0,1
8000	0,0
10000	0,1
SUMA (dBA)	0,1

Standardabweichung für die Nachhallzeit t20 [s] beträgt:

Frequenz (Hz)	Nachhallstandardabweichung
(Hz)	t ₂₀ [s]
50	0,55
63	0,36
80	0,42
100	0,34
125	0,25
160	0,27
200	0,16
250	0,14
315	0,12
400	0,08
500	0,10
630	0,09
800	0,09
1000	0,09
1250	0,10
1600	0,11
2000	0,12
1500	0,14
3150	0,11
4000	0,08
5000	0,08
6300	0,07
8000	0,06
10000	0,05

Untersuchungsbericht-Nr.: RS - 2014/B -194	Seite
	13/13

Auftragsausführender Leiter des Labors für Akustik

Unterschrift: *Jakubowski*Dr. Ing. Piotr Jakubowski
PJ – Initialen des Berichtsautors

Autorisiert von Spezialisierte Mitarbeiterin für Akustik Unterschrift unleserlich Mag. Magdalena Kuśmirek Teakleiter Leiter der Labore für Umweltuntersuchungen Unterschrift unleserlich Dr. Ing. Mateusz Weryk